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ABSTRACT 
In this paper we are going to use a physically motivated method for surface reconstruction that can recover smooth 

surfaces from noisy and sparse data sets. No orientation information is required. By a new technique based on 

regularized-membrane potentials the input sample points are aggregated, leading to improved noise tolerability and 

outlier removal, without sacrificing much with respect to detail (feature) recovery. In this method, sample points are 

first aggregated on a volumetric grid. A labeling algorithm that relies on intrinsic properties of the smooth scalar 

field  which emerging after the  aggregation,  is used to classify grid points as exterior or interior to the surface. We 

also introduce a mesh-smoothing paradigm based on a mass-spring system, enhanced with a bending-energy 

minimizing term to ensure that the final triangulated surface is smoother than piecewise linear. The method 

compares favorably with respect to previous approaches in terms of speed and flexibility. 

 

KEYWORD: Mass-spring system, membrane potential, point cloud, regularization, surface reconstruction, 
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     INTRODUCTION 
The goal of surface reconstruction is to obtain a digital representation of a real, physical object or phenomenon 

described by a cloud of points, sampled on or near its surface. In this paper, we propose a novel technique for 

surface reconstruction, which employs regularized-membrane potentials, evaluated on a volumetric grid, to output 

smooth surfaces from noisy and sparse data. The purpose of these potentials is twofold: to aggregate data points and 

to remove outliers due to noise. In the following we denote by aggregation the process in which gaps between the 

data points are bridged by a slowly-varying scalar field. 

 

The purpose of surface reconstruction is to obtain a digital representation of a real, physical object or phenomenon 

described by a cloud of points, which are sampled on or near the object’s surface. The growing interest in this field 

is due to the increasing availability of point-cloud data, such as may be obtained from medical scanners, laser 

scanners, vision techniques (e.g., range images), and other modalities. In computer vision, shape recovery is a 

classical problem, whose goal is to derive a 3-D scene description (e.g., surface normal and surface depth) from one 

or more 2-D images. All techniques that recover shape are commonly called “shape-from-X,” where X can be 

shading, stereo, texture, or silhouettes, etc. (see [1]–[5] and the references therein). For example, in the stereo 

problem, one first extracts features (e.g., corners, lines, etc.) from a collection of input images, and then solves the 

so-called correspondence problem, i.e., matching features across images. After obtaining depth information at the 

locations of the extracted features, one needs to reconstruct the surfaces of the objects present in the scene. One way 

of achieving this is by using techniques that reconstruct surfaces from point clouds. 

 

PROPOSED ALGORITHM 
Fig. 1 shows the computational flow diagram of our method. First, the input sample points (assumed to be without 

any orientation information) are assigned to grid cells, using cloud-in-cell (CIC) interpolation (first step in Fig.1) 

Perform aggregation of the sample points by computing regularized membrane potentials on the grid. A labeling 
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algorithm, which follows increasing paths of the scalar field (starting from the bounding box and marching towards 

the data points), is used to classify the grid points into exterior and interior to the surface, thus defining an implicit 

(rough) surface. Prior to polygonization, we again use diffusion potentials, but this time with the purpose of producing 

a smooth implicit surface. Then, we employ Bloomenthal’s polygonizer[14] to turn the implicit surface into a 

triangulated one , and use a mass-spring system, enhanced with a bending-energy minimizing term, in order to obtain 

a larger degree of surface smoothness. 

 

MODULE: 

The work can be divided into four models- 

Module 1: Aggregation of input data points. 

Module 2: Classification of grid cells. 

Module 3: Surface smoothing and polygonisation. 

 

 
Fig.1. flow diagram of the proposed method 

 

MODULE DESCRIPTION: 

The first step assigns the input data points to cells of a 3-D grid using the CIC interpolation scheme. Then aggregation 

of the sample points is performed by computing regularized-membrane potentials on the grid labeling algorithm, 

which follows increasing paths of the scalar field, is used to classify the grid points into exterior and interior to the 

surface, thus defining an implicit (rough) surface. Prior to polygonisation, diffusion potentials is again used, but this 

time with the purpose of producing a smooth implicit surface. Then Bloomenthal’s polygonizer[14] is employed to 

turn the implicit surface into a triangulated one and use a mass-spring system, enhanced with a bending-energy 

minimizing term, in order to obtain a larger degree of surface smoothness. 
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MODULE 1: 

 This step assigns the input data points to cells of a 3-D grid, using the CIC interpolation scheme. Accordingly, a 

constant numerical value (we fix this value to one), representing the contribution of each data point to the initial (heat) 

distribution, is spread to the eight nearest cell centers. The weights are given by the overlap volumes of a box, 

centered around the data point under consideration, with the neighboring voxels. If several points contribute to the 

same cell, the values are accumulated.  The nonempty grid cells will serve as sources generating potentials on the 

grid. The nonempty grid cells, called source points, are regarded as sources for the physical simulation of heat flow, 

as defined by the linear diffusion equation. 

 

Aggregation has the disadvantage that it converges to a constant steady state. That is, the size of the support regions 

around the cells corresponding to the input points increase with the number of iterations, so that the diffusion would 

eventually converge to a constant solution covering the whole volume. Two heat sources are placed at positions and 

from the temporal evaluation of the pure diffusion process, one can easily notice that after the positions of the two 

maxima (corresponding to the sources) can barely be distinguished.  

 

Since we are not interested in the steady state of linear diffusion, a criterion is required for choosing a stopping time. 

This can be done with the help of an additional reaction term. This keeps the steady state close to the initial value, 

leading to the regularized membrane equation.  

                                                   

MODULE 2: 

After aggregation, a method is needed which separates the exterior grid points from the interior ones, thus defining 

the primary implicit surface. This method should start from the bounding box of the computational grid, follow 

increasing paths of the scalar field on the grid towards the source points, and label grid cells as exterior, as it 

proceeds. After the propagation has stopped at regional maxima and ridges, the boundary separating the remaining 

(interior) points from the exterior points can be traced to yield the reconstructed surface. This process is repeated until 

the maximum distance of the temporary boundary points is smaller than some preset distance threshold. 

 

Our algorithm starts also by labeling all points as interior. Then, the points situated on the bounding box of the grid 

are inserted in a queue (enqueued) and assigned some temporary value, TRIAL. Then, the subspace is swept as 

follows. Each trial point is removed from the queue (dequeued) and checked to see if it has at least an interior 

neighbor that has a smaller value of the potential scalar field. Only if it does not have such a neighbor, the point is 

turned into an exterior point and all its interior neighbors are inserted into the queue, as trial points. Otherwise, none 

of its neighbors is enqueued and its label remains untouched. This case, in which the marching front reaches an 

interior point with a smaller value, may occur in two situations: (i) either the front has just arrived at the true location 

of the boundary separating surface interior from exterior, or (ii) the point has a neighbor which has been labeled 

beforehand. In the first case, the algorithm should stop turning interior neighboring points into exterior points, since 

these points are situated on the other side of the advancing front, and they are truly interior points. 

 

About point cloud: 

A point cloud is a set of vertices in a three-dimensional coordinate system. These vertices are usually defined 

by X, Y and Z coordinates. Point clouds are most often created by 3D scanners. These devices measure a large 

number of points on the surface of an object, and output a point cloud as a data file. The point cloud represents the 

visible surface of the object that has been scanned or digitized. Point clouds are used for many purposes, including 

creating 3D CAD models for manufactured parts, metrology/quality inspection, and a multitude of visualization, 

animation, rendering and mass customization applications. 

 

Convex hull: 

In mathematics, the convex hull or convex envelope for a set of points X in a real vector space V is the 

minimal convex set containing X. In computational geometry, it is common to use the term "convex hull" for 

the boundary of the minimal convex set containing a given non-empty finite set of points in the plane. Unless the 

points are collinear, the convex hull in this sense is a simple closed polygonal chain. 
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About Voxels: 

A voxel (volumetric pixel) is a volume element, representing a value on a regular grid in three dimensional spaces. 

This is analogous to a pixel, which represents 2D image data in a bitmap (which is sometimes referred to as 

a pixmap). As with pixels in a bitmap, voxels themselves do not typically have their position (their coordinates) 

explicitly encoded along with their values. 

                                          

MODULE 3:  

It undergo steps like 

Interpolation Using Membrane Potentials: 

Direct polygonisation will cause “staircase” artifacts in the resulting mesh. A better approach is to interpolate the 

implicit surface using the reaction-diffusion process a second time, with the labeled grid points as sources. Sources 

are instantiated only at the locations of the interior and exterior grid points since the membership of boundary points 

is uncertain. By tracing the zero iso-contour a smooth scalar field emerges and the implicit surface is turned into a 

triangulated one. Since boundary voxels form thin bands along surface borders, a small number of iterations is 

required, resulting in fast computation. The triangulated surface, which is a better approximation to the real surface 

than the initial one, is used as initialization for the more computationally demanding mass-spring system. 

 

Mesh Smoothing With a Mass-Spring System: 

Assuming that the correct topology has been inferred and the triangulated surface possesses consistent orientation we 

propose a mass-spring system for obtaining a larger degree of smoothing. That is, each edge of each triangular patch 

comprising the mesh is modeled by a spring and each vertex is regarded as a particle with a small mass. Since we 

utilize triangular elements, we do not need to include extra cross springs to afford resistance against shearing. In 

addition, we integrate an extra energy term such that the bending energy of the system is minimized. This has the 

beneficial effect, analogous to curvature flow, that the triangulated surface is smoothened by moving its vertices along 

their normals with a speed proportional to the (normal) curvature. 

 

EXPERIMENT AND RESULT 
Matlab 7.0 software platform is use to perform the experiment. The PC for experiment is equipped with an Intel P4 

2.4GHz Personal laptop and 2GB memory.  

From experiment results, we can draw to the conclusion that we have introduced a novel framework for surface 

reconstruction starting from unorganized point clouds without orientation information.  

 

CONVEX HULL RESULTS 

-4

-2

0

2

4

-4

-2

0

2

4
-3

-2

-1

0

1

2

3

 
  

 

                                                                            

http://www.ijesrt.com/


 
[Patil*, 5(5): May, 2016]  ISSN: 2277-9655 

  Impact Factor: 3.785  

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [37] 

POINT CLOUD 

 

 
 

Final Out put : 

 

 
Points Cloud                             Output Surface 

 

The difference between points cloud & output surface is that, in cloud based extraction we can see only the 

structural part but not able to see what is happing on the surface. The main advantage of the work is that, we are able 

to clearly see the structural part as well as what is happing on the surface. 

 

CONCLUSION 
We have introduced a novel framework for surface reconstruction starting from unorganized point clouds without 

orientation information, and demonstrated its effectiveness in various experimental settings. The method can be used 

to efficiently reconstruct surfaces from clean as well as noisy data sets, and in our opinion, this represents an 

advantage over existing methods. For example laughing Buda, any normal damage been happen on the image 

surface will be clearly viewed. 
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